
Time-domain Green dyadics for temporally dispersive, bi-isotropic media

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 7363

(http://iopscience.iop.org/0305-4470/31/36/009)

Download details:

IP Address: 171.66.16.102

The article was downloaded on 02/06/2010 at 07:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/36
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 7363–7378. Printed in the UK PII: S0305-4470(98)92867-0

Time-domain Green dyadics for temporally dispersive,
bi-isotropic media

Igor Egorov
Department of Electromagnetic Theory, Lund Institute of Technology, PO Box 118, S-221 00
Lund, Sweden

Received 30 March 1996

Abstract. Time-domain Green dyadics for linear, homogeneous, temporally dispersive bi-
isotropic media are presented. A complex time-dependent electromagnetic field is introduced.
Approximation to the complex field from an electric point dipole in an unbounded bi-isotropic
medium with respect to the slowly varying components (second forerunner approximation) is
obtained. Numerical examples are presented. Surface integral equations for the tangential
components of the electromagnetic fields are derived for two standard scattering problems.

1. Introduction

Green functions and Green dyadics for simple media are well known notions in time-
harmonic field analysis [1–3]. They are defined as the solutions to the scalar and the
dyadic Helmholtz equations, respectively, with impulsive source terms. The knowledge
of the Green function (Green dyadic) provides a possibility to obtain the solution of the
scalar (vector) Helmholtz equation with an arbitrary source term. Time-harmonic Green
functions and Green dyadics are often used to obtain surface integral representations of the
electromagnetic fields [4]. These representations together with the boundary conditions lead
to integral equations for the tangential components of the electric and magnetic fields on
the boundary (equivalent magnetic and electric surface current densities, respectively).

During the last decade, time-harmonic Green functions and Green dyadics for various
homogeneous, linear, complex (e.g. bi-isotropic [5] or uniaxial [6]) materials, have also
been obtained. Recently, results for a large class of bi-gyrotropic materials, which involve
at most 12 independent parameters, have been presented [7].

The majority of materials are dispersive, i.e. the parameters depend on frequency. This
dependence does not play any role in the analysis of time-harmonic fields. However, in order
to study pulse propagation, it has to be taken into account. Time-dependent Green functions
and Green dyadics offer a natural tool to investigate pulse propagation in dispersive media.
They are defined as the solutions of the scalar and the dyadic wave equations (or dispersive
wave equations), respectively, with impulsive source terms. The free-space time-dependent
Green dyadic is introduced in [8]. In [9], time-dependent Green dyadics for homogeneous,
dispersive, isotropic media are derived. In this paper, the theory is generalized to the case of
temporally dispersive, bi-isotropic materials. The complex time-dependent electromagnetic
field introduced in [10] is utilized to simplify the analysis.

The outline of this paper is as follows. In section 2, the notation and the basic equations
are introduced as well as the constitutive relations relevant to the problem in question. In
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section 3, the complex time-dependent electromagnetic field is defined. The Green dyadic
for the complex field is derived and given in explicit form in section 4. In section 5, the
fields from an electric point dipole in an unbounded, temporally dispersive, bi-isotropic
medium are obtained and approximated with respect to the slowly varying components
(second forerunner approximation), and the numerical results are presented. Surface integral
representations of the complex field are obtained in section 6 and these are used in section 7
to obtain surface integral equations for the tangential components of the electromagnetic
fields. Some conclusions are drawn in section 8.

2. Basics

In this paper, scalars are italic, vectors are bold italic, and dyadics are bold Roman.
The three-dimensional identity dyadic is denoted byI , the dyadic differential operators
in Cartesian coordinates are given by [3]

∇∇ = (∂xux + ∂yuy + ∂zuz)(∂xux + ∂yuy + ∂zuz)
∇ × I = (∂xux + ∂yuy + ∂zuz)× (uxux + uyuy + uzuz).

Standard notation is used for all electromagnetic fields as well as charge and current
densities. The speed of light in vacuum isc0 and the intrinsic impedance of vacuum
η0. The permittivity and permeability of vacuum are denoted byε0 andµ0, respectively.

The Maxwell equations,

∇ ×E(r, t) = −∂tB(r, t)
∇ ×H(r, t) = J(r, t)+ ∂tD(r, t)

(2.1)

and the equation of continuity,

∇ · J(r, t)+ ∂tρ(r, t) = 0 (2.2)

describe the dynamics of the electromagnetic fields and charges in macroscopic media. All
fields and source terms are assumed to be initially quiescent. This means that all these
quantities are zero before a certain timet , sayt = 0.

The constitutive relations of a homogeneous, temporally dispersive, bi-isotropic medium
in the absence of an optical response are [11, 10]

c0η0D(r, t) = E(r, t)+ (χee ∗E)(r, t)+ (χem ∗ η0H)(r, t)

= [εE](r, t)+ [ξη0H](r, t)

c0B(r, t) = (χme ∗E)(r, t)+ η0H(r, t)+ (χmm ∗ η0H)(r, t)

= [ζE](r, t)+ [µη0H](r, t)

where χij (t), i, j = e,m, are the susceptibility kernels of the medium. The relative
permittivity and permeability operators,ε = (1+ χee∗) andµ = (1+ χmm∗), as well as
the relative cross-coupling terms,ξ = χem∗ andζ = χme∗, are temporal integral operators.
The asterisk denotes temporal convolution

(χ ∗E)(r, t) =
∫
χ(t − t ′)E(r, t ′) dt ′.

Hereafter, the integration limits−∞ and∞ are omitted in time integrals, i.e.
∫
. . .dt ′ :=∫∞

−∞ . . .dt
′. Causality implies that all susceptibility kernels are identically zero for time

t < 0 which means that the upper limit in the integral above can be set tot . All kernels
are supposed to be smooth and bounded fort > 0. Bi-isotropic medium is Pasteur if
χme(t) = −χem(t), it is Tellegen ifχme(t) = χem(t) [12].
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3. The complex time-dependent electromagnetic field

The complex time-dependent electromagnetic fieldQ(r, t) is introduced through the
relations [10]

E = Q+Q∗
η0H = iYQ− iY∗Q∗

(3.1)

where i is the imaginary unit and the relative intrinsic admittanceY = (1 + Y∗) is a
complex-valued temporal integral operator.Q∗(r, t) andY∗ denote complex conjugates of
Q(r, t) andY, respectively. Explicitly,

Q = 1
2Z(Y

∗E − iη0H)

where the relative intrinsic impedanceZ = (1 + Z∗) is a real-valued temporal integral
operator defined by

(Y + Y∗)Z/2= 1.

Demanding decoupling of the Maxwell equations for the complex fieldsQ(r, t) andQ∗(r, t)
gives the following condition on the operatorY:

Yζ − iε + iY2µ+ Yξ = 0. (3.2)

The Maxwell equations then reduce to

∇ ×Q = − i

c0
∂tNQ− i

2
η0ZJ (3.3)

where the index of refractionN = (1+N∗) is a complex-valued temporal integral operator
defined by

N = µY∗ + iξ = µY − iζ. (3.4)

Equations (3.2) and (3.4) can be combined to obtain the following expressions for the
operatorsN andY in terms of the known data:

N = i
ξ − ζ

2
+
√
µε − (ξ + ζ )

2

4

µY = i
ξ + ζ

2
+
√
µε − (ξ + ζ )

2

4
where the square-root operator is√

µε − (ξ + ζ )
2

4
= 1+Nco(t) ∗ .

Here, the real-valued integral kernelNco(t) satisfies the nonlinear Volterra integral equation
of the second kind

2Nco(t)+ (Nco ∗Nco)(t) = χee(t)+ χmm(t)+ (χee ∗ χmm)(t)− (χ ∗ χ)(t)
where

χ(t) = χem(t)/2+ χme(t)/2
is the nonreciprocity kernel. For a Pasteur mediumχ ≡ 0.

The wavenumber operatorK is defined by

K = c−1
0 ∂tN = c−1

0 ∂t (1+N∗).
The inverses of all the operators above exist and are well-defined temporal integral

operators, cf [9].
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4. Green dyadic for the complex field

The Green dyadicGQ for the complex electromagnetic fieldQ(r, t) is defined by [9]

Q(r, t) =
∫
R3

∫
GQ(r − r′; t − t ′) · µ0∂t ′ [µJ ](r′, t ′) dt ′ dv′. (4.1)

Using (3.3), the following equation for the dyadicGQ is obtained

(∇ × I + iIK)GQ = − i

2
Ic0∂

−1
t Zµ−1[δ0⊗ δ0] (4.2)

whereδ0 = δ(r) andδ0 = δ(t) are the Dirac delta functions in space and time, respectively.
Operating with∇· on (4.2) gives

∇ ·GQ = −c0

2
∇ · I∂−1

t ZK−1µ−1[δ0⊗ δ0].

Operating with∇× on (4.2) and using the equation above leads to the following dispersive
wave equation for the Green dyadic

[1−K2]GQ = 1
2[I −∇∇K−2+ iK−1∇ × I ]ZNµ−1[δ0⊗ δ0]

where1 is the Laplace operator. The solution to the equation above can be written in the
following form:

GQ = − 1
2[I −∇∇K−2+ iK−1∇ × I ]ZNµ−1E (4.3)

whereE = E(r; t) is the retarded fundamental solution of the dispersive wave operator
(−1+K2). The fundamental solutionE(r; t) is given by [13, 9]

E(r; t) = q(r) 1

4πr

(
δ

(
t − r

c0

)
+ P

(
r; t − r

c0

))
(4.4)

where

q(r) = exp

(
− r
c0
N(+0)

)
(4.5)

and

P(r; t) =
∞∑
m=1

1

m!

(
− r
c0

)m
((N ′∗)m−1N ′)(t). (4.6)

The kernelP(r; t) satisfies the Volterra temporal integral equation of the second kind [13, 9]

tP (r; t) = F(r; t)+ (F (r; ·) ∗ P(r; ·))(t) F (r; t) = −t r
c0
N ′(t)

P (r; t) = 0 for t < 0.
(4.7)

An alternative representation of the retarded fundamental solution, which is used below to
obtain the second forerunner approximations, is [13, 9]

E(r; ·)∗ = 1

4πr
exp

(
− r
c0
∂t (δ(·)+N(·))∗

)
(4.8)

where the exponential function is understood in terms of its Maclaurin expansion. Note that
(cf [9])

GQ(r − r′; t − t ′) = GT
Q(r

′ − r; t − t ′) (4.9)

whereGT
Q is the transpose of the dyadicGQ. (Recall that a dyadicAT is the transpose of

a dyadicA if A · F = F · AT for all vectorsF .)
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The operator combinationZNµ−1 in (4.3) can be expressed in terms of the constitutive
operators as

ZNµ−1 = 1+ i

2
(ξ − ζ )

(
µε − (ξ + ζ )

2

4

)−1/2

·
Note that if the medium is isotropic, thenZNµ−1 = 1 and (4.3) reduces to the result in [9].

With the help of Schwartz’ pseudo-functions [14], the expression (4.3) can be written
explicitly as, cf [9],

2GQ = − 1
3IK−2ZNµ−1 [δ0⊗ δ0]

+ (urur − I)ZNµ−1E (3urur − I)
(
Pf.

(
1

r3

)
K−2+ 1

r2
K−1

)
ZNµ−1rE

+i

(
1

r2
K−1+ 1

r

)
ZNµ−1 (rE × I) . (4.10)

5. Example

5.1. Electric point dipole in a dispersive bi-isotropic medium

Suppose that an electric point dipole, placed in an unbounded bi-isotropic medium, flashes
on and off at timet = 0. Its electric dipole moment ispδ(t), wherep is a constant vector.
The charge and current densities of this source are given by

ρ = −(p · ∇) (δ0⊗ δ0) J = p∂t (δ0⊗ δ0)

(5.1)

respectively. Using equations (4.1) and (4.10) gives the following expression for the
complex time-dependent electromagnetic field generated by an electric point dipole:

2ε0Q = − 1
3pN

−1Z [δ0⊗ δ0] + (urur − I) · pc−2
0 ∂2

t ZNE + (3urur − I)

·p
(
Pf.

(
1

r3

)
N−1+ 1

r2
c−1

0 ∂t

)
Z (rE)+ i

(
1

r2
+ 1

r
K
)
c−1

0 ∂tZ (rE × p) .
(5.2)

Recall that the operatorsN and K as well as the retarded fundamental solutionE are
complex quantities.

The field Q(r, t) can be obtained numerically by solving equation (4.7),
substituting (4.4) into (5.2), and performing all the convolutions. This procedure is very
time and memory consuming.

In analogy with the analysis in [9], asymptotic methods developed in [15, 13] can be
used to obtain an approximation to the dipole fields with respect to the slowly varying
components (the second forerunner approximation). First, write [13]

E(r; ·)∗ = 1

4πr
exp

(
− r
c0
∂t (1+N(·)∗)

)
≈ 1

4πr
exp

(
− r
c0
((1+ n1)∂t + n2∂

2
t + n3∂

3
t )

)
= Ẽ(r; ·) ∗ (5.3)

where

Ẽ(r; t) = 1

4πr
exp

(
n3

2

27n2
3

r

c0
− n2

3n3
(t − t1(r))

)
Ai(sign(Re(n3))(t − t1(r))/t3(r))

t3(r)
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n1 =
∫ ∞

0
N(t) dt n2 = −

∫ ∞
0
tN(t) dt n3 = 1

2

∫ ∞
0
t2N(t) dt

t1(r) =
(
n1+ 1− n2

2

3n3

)
r

c0
t3(r) =

(
3n3sign(Re(n3))r

c0

)1
3

·
Now, to asymptotic expressions for the dipole fields, approximate convolutions in (5.2) by
the first three terms in their series representations [15, 13], e.g.

Z = (1+ Z∗) ≈ (1+ z1)+ z2∂t + z3∂
2
t

where the moments are

z1 =
∫ ∞

0
Z(t) dt z2 = −

∫ ∞
0
tZ(t) dt z3 = 1

2

∫ ∞
0
t2Z(t) dt.

Using these approximations and (5.3) in (5.2) give an approximate expression for the
complex fieldQ(r, t) due to an electric point dipole. The main advantage of this method
is that the resulting expression contains only algebraic combinations of the exponential
function, Airy function and its derivative. No convolutions or other time-consuming
operations are involved. An explicit formula for this approximation for the case of an
isotropic, nonmagnetic medium is presented in [9]. The general expression is too long to
be presented in this paper.

Note that this technique cannot be used to obtain the wavefront behaviour (the first
precursor) of the complex fieldQ(r, t).

5.2. Numerical calculations

In this section, the methods described above are used to calculate the dipole fields in a
chiral medium. Both numerical and asymptotic solutions are obtained and the results are
compared.

In terms of the susceptibility kernels, Drude’s model for reciprocal, nonmagnetic,
isotropic chiral materials (also known as Condon’s model) can be described as [13]

G(t) = H(t)ω
2
p

ν0
sin(ν0t) exp

(
−νt

2

)
χem(t) = −χme(t) = κ(t) = α∂tG(t)
χee(t) = χ(t) = G(t)− (κ ∗ κ) (t)
χmm = 0

(5.4)

whereH(t) is the Heaviside step function,ω0, ωp, and ν are the harmonic, plasma, and

collision frequencies, respectively,ν0 =
√
ω2

0 − ν2/4, andα is a constant depending on the
microstructure of the medium. For this model, the susceptibility moments are [13]

χ1 =
ω2
p

ω2
0

χ2 = −
νω2

p

ω4
0

χ3 = −
(w2

0 − ν2)w2
p

w6
0

− α2
w4
p

w4
0

n1 =
√

1+ χ1− 1 n2 = χ2

2(1+ n1)
+ iαχ1 n3 = χ3− (Ren2)

2

2(1+ n1)
+ iαχ2

nres1= − n1

1+ n1
nres2= −n2(1+ nres1)

1+ n1
nres3= − (1+ nres1)n3+ nres2n2

1+ n1

z1 = − n1

1+ n1
z2 = −Ren2(1+ z1)

1+ n1
z3 = − (1+ z1)Ren3+ z2Ren2

1+ n1
.
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θ θ

Figure 1. The fieldsEθ andHθ from a dipoleuz10−17δ(t) C m s in a chiral medium at a
distancer = 4× 10−6 m from the dipole at an angle of observationθ = π/4. The medium is
characterized by the parametersα = 3.33×10−18 s,ωp = ω0 = 3×1016 s−1, ν = 6×1015 s−1.

ç φ

Figure 2. The fieldsEφ andHφ from a dipole in a chiral medium. For details see the caption
of figure 1.

r

r

Figure 3. The fieldsEr andHr from a dipole in a chiral medium. For details see the caption
of figure 1.

In figures 1–3, the components of the electric and magnetic fields due to an electric point
dipole (5.1) withp = uz10−17 C m s in an unbounded chiral medium are presented. The
medium is characterized by the parametersα = 3.33× 10−18 s, ωp = ω0 = 3× 1016 s−1,
ν = 6× 1015 s−1. The distance from the dipole to the observation point is 4× 10−6 m
and the angle of observation isθ = π/4. Both the numerical solution (full curve) and
the asymptotic approximation (broken curve) are presented. The agreement between these
two solutions is quite good. A quick look at figures 1 and 4, where the latter presents the
θ -component of the electric field at the distancer = 10−6 m, reveals that the developed
method gives better approximation for larger propagation depths which is intuitively clear
from the representation in equation (4.8).
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Figure 4. The fieldEθ from a dipoleuz10−17δ(t) C m s in a chiral medium at a distance
r = 10−6 m from the dipole at the observation angleθ = π/4. For material parameters see the
caption of figure 1.

Figure 5. Theθ -component of the fieldE from a dipoleuz10−17δ(t) C m s in a chiral medium
at distancesr = 4× 10−6 m andr = 4× 10−5 m from the source. For material parameters see
the caption of figure 1.

Figure 5 illustrates how theθ -component of the electric field changes with the distance.
The left curve represents the field atr = 4 × 10−6 m from the dipole while the right
one—at a 10 times larger distance. Note that different scales are used for different curves.
Only asymptotic results are available for large propagation depths. Other field components
change with the distance in a similar way.

Note thatt in all figures denotes the time after the arrival of the wavefront (i.e.t is ‘the
wavefront time’).
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6. Surface integral representations

The derivation of the surface integral representations and the surface integral equations for
the complex electromagnetic fieldQ(r, t) in [9] is now generalized to the case of bi-isotropic
materials.

Let V− and V+ be two disjoint open domains inR3 such thatV− ∪ V+ = R3.
Furthermore, suppose thatS = R3 \ (V− ∪ V+) is a regular surface. Letun = un(r)
denote the outward, with respect toV−, unit normal vector toS. Furthermore, let

Q±(r, t) = lim
V±3r′→r

Q(r′, t) r ∈ S.
If the domainV− is filled with a known temporally dispersive, bi-isotropic medium, it is

possible to express the complex fieldQ(r, t), r ∈ V−, in terms of its tangential components
at the boundary,un × Q−(r, t), r ∈ S, and the current densityJ(r, t), r ∈ V−. No
information about the material in the domainV+ is needed. Using equations (3.3) and (4.2)
and the general differentiation rule

∇′ · (Q(r′, t ′)×GQ(r
′ − r; t − t ′)) = (∇′ ×Q(r′, t ′)) ·GQ(r

′ − r; t − t ′)
−Q(r′, t ′) · (∇′ ×GQ(r

′ − r; t − t ′))
give for r ∈ V−
∇′ · (Q(r′, t ′)×GQ(r

′ − r; t − t ′)) = ic0

2
δ(r − r′) δ(t − t ′)∂−1

t [Zµ−1Q](r, t)

− iη0

2
[ZJ ](r′, t ′) ·GQ(r

′ − r; t − t ′)− i[KQ](r′, t ′) ·GQ(r
′ − r; t − t ′)

+iQ(r′, t ′) · [KGQ](r′ − r; t − t ′). (6.1)

Note that, due to causality,Q(r′, t ′) × GQ(r
′ − r; t − t ′) has bounded support for every

fixed r andt . Let Vr,t be a bounded open domain containing this support and such that the
boundarySr,t of Vr,t ∩ V− is regular. Then, using the Gauss theorem for dyadics, identity
(4.9), and the equality

(u′n ×Q−(r′, t ′)) ·GQ(r
′ − r; t − t ′) = u′n · (Q−(r′, t ′)×GQ(r

′ − r; t − t ′))
give∫
V−
∇′ · (Q(r′, t ′)×GQ(r

′ − r; t − t ′)) dv′

=
∫
Vr,t∩V−

∇′ · (Q(r′, t ′)×GQ(r
′ − r; t − t ′)) dv′

=
∮
Sr,t

GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dS ′

=
∫
S

GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dS ′ (6.2)

whereu′n = un(r′). Now integrate (6.1) over(r′, t ′) ∈ V− ⊗ (−∞,∞). Integration with
respect tot ′ results in a cancellation of the last two terms on the right-hand side due to
the commutative property of temporal convolutions. Finally, integrating with respect tor′

gives the following expression, which can be referred to as Huygens’ principle:
ic0
2 ∂
−1
t [Zµ−1Q](r, t)

0

}
= ic0

2
∂−1
t [Zµ−1Qi−](r, t)

+
∫
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dt ′ dS ′

{
r ∈ V−
r ∈ V+ (6.3)
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where the source term is given by

Qi−(r, t) =
∫
V−

∫
GQ(r − r′; t − t ′) · µ0∂t ′ [µJ ](r′, t ′) dt ′ dv′.

Obviously, the case when the medium in the domainV+ is known and the one inV− is
not, can be handled in the same way. The result is

ic0
2 ∂
−1
t [Zµ−1Q](r, t)

0

}
= ic0

2
∂−1
t [Zµ−1Qi+](r, t)

−
∫
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q+(r′, t ′)) dt ′ dS ′

{
r ∈ V+
r ∈ V−

(6.4)

where

Qi+(r, t) =
∫
V+

∫
GQ(r − r′; t − t ′) · µ0∂t ′ [µJ ](r′, t ′) dt ′ dv′.

7. Surface integral equations

In this section, surface integral equations for the tangential components of the fieldQ(r, t)
are obtained. The materials in both domains,V+ and V−, are supposed to be known.
Furthermore, it is assumed thatJ(r, t) = 0 whenr ∈ S. The analysis follows the guidelines
of the discussion in [9] (see also [4]).

From the Gauss surface divergence theorem it follows that∫
S

(∇∇E(r − r′; t − t ′)) · (u′n ×Q−(r′, t ′)) dS ′

=
∫
S

(∇∇SE(r − r′; t − t ′)) · (u′n ×Q−(r′, t ′)) dS ′

= ∇
∫
S

(E(r − r′; t − t ′))∇′S · (u′n ×Q−(r′, t ′)) dS ′ r /∈ S (7.1)

where∇S · is the surface divergence [16, 12]. The surfaceS does not need to be closed
due to the bounded support of the integrand. Equation (7.1) together with (4.3) lead to the
following form of the surface integral on the right-hand side of (6.3):∫
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dt ′ dS ′

= ZNµ−1

{
− 1

2

∫
S

∫
E(r − r′; t − t ′)u′n ×Q−(r′, t ′) dt ′ dS ′

+ 1
2∇

∫
S

∫
[K−2E ](r − r′; t − t ′)∇′S · (u′n ×Q−(r′, t ′)) dt ′ dS ′

− i

2
∇ ×

∫
S

∫
[K−1E ](r − r′; t − t ′)(u′n ×Q−(r′, t ′)) dt ′ dS ′

}
r /∈ S.

(7.2)

In the limit r → S± (i.e. V± 3 r → S), the representation (6.3) transforms into the
surface integralrelation for the complex fieldQ−(r, t). Using (7.2), (6.3), and the jump
relations [9]
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∇
∫
S

∫
E(r − r′; t − t ′)f (r′, t ′) dt ′ dS ′

=
∫
S

∫
∇E(r − r′; t − t ′)f (r′, t ′) dt ′ dS ′ ± 1

2unf (r, t) r→ S±

∇ ×
∫
S

∫
E(r − r′; t − t ′)F (r′, t ′) dt ′ dS ′

=
∫
S

∫
(∇E(r − r′; t − t ′))× F (r′, t ′) dt ′ dS ′ ± 1

2un × F (r, t) r→ S±

which are valid for any sufficiently regular scalar fieldf (r, t) and vector fieldF (r, t), give
for r ∈ S

ic0
2 ∂
−1
t [Zµ−1Q−](r, t)

0

}
= ic0

2
∂−1
t [Zµ−1Qi−](r, t)

+
∫
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dt ′ dS ′

±ZNµ−1

{
1

4
un∇S · (un × [K−2Q−](r, t))

− i

4
un × (un × [K−1Q−](r, t))

}
·

(7.3)

The surface integral on the right-hand side of (7.3) is interpreted as∫
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dt ′ dS ′

= ZNµ−1

{
− 1

2

∫
S

∫
E(r − r′; t − t ′)u′n ×Q−(r′, t ′) dt ′ dS ′

+ 1
2

∫
S

∫
∇([K−2E ](r − r′; t − t ′))∇′S · (u′n ×Q−(r′, t ′)) dt ′ dS ′

− i

2

∫
S

∫
∇([K−1E ](r − r′; t − t ′))× (u′n ×Q−(r′, t ′)) dt ′ dS ′

}
r ∈ S

(7.4)

where the integrals exist as principal value integrals. Using the Maxwell equations (3.3)
and the fact that∇S · (un ×Q−) = −un · (∇ ×Q−), both equations (7.3) reduce to
ic0

4
∂−1
t [Zµ−1Q−](r, t) = ic0

2
∂−1
t [Zµ−1Qi−](r, t)

+
∫
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q−(r′, t ′)) dt ′ dS ′ r ∈ S (7.5)

where the surface integral term is given by (7.4).
The integral relation based on equation (6.4) can be derived in the same way. The result

is
ic0

4
∂−1
t [Zµ−1Q+](r, t) = ic0

2
∂−1
t [Zµ−1Qi+](r, t)

−
∫
S

∫
GQ(r − r′; t − t ′) · (u′n ×Q+(r′, t ′)) dt ′ dS ′ r ∈ S. (7.6)

To advance further in solving the scattering problem, boundary conditions on the surface
S (i.e. the connection betweenQ+(r, t) andQ−(r, t), for r ∈ S) have to be specified. In
sections 7.1 and 7.2, two standard scattering problems are discussed.
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7.1. Perfectly conducting scatterer

In this section,V− is a perfect conductor andV+ a temporally dispersive bi-isotropic
medium. The boundary condition on the surfaceS is un × E = 0. In terms of the
complex fieldQ(r, t), it becomesun × [Q + Q∗](r, t) = 0, r ∈ S. Taking the cross
product of both members in (7.6) withun and using the boundary condition give the
following integral equation for the surface current densityJ eS(r, t) := un × H(r, t) =
un × [iYQ− iY∗Q∗](r, t)/η0, r ∈ S:

J eS(r, t) =
i4

η0
Z−1

(
un ×Qi+(r, t)

+un ×
∫
S

∫
GQ(r − r′; t − t ′) · µ0∂t ′ [µJ

e
S ](r′, t ′) dt ′ dS ′

)
. (7.7)

Note that the above equation has exactly the same form as the one in the isotropic case [9].
The difference is in a more complicated structure of the Green dyadicGQ. (Recall that
the refractive indexN , the wavenumberK, and the fundamental solutionE in (4.3) are all
complex.) Separating (7.7) into its real and imaginary parts gives two alternative integral
equations for the surface current density, the first being of the second kind and the second
of the first kind. Unfortunately, both of them contain the surface divergence∇S · J eS of the
unknown fieldJ eS (cf (7.4)). This makes numerical treatment of these equations unattractive.
Moving the derivative from the surface field to the∇E-term (integration by parts) does not
reduce this inconvenience because then the highly singular second space derivatives of the
kernel E(r − r′; t − t ′) have to be dealt with. However, it is possible to combine these
equations to obtain an integral equation which does not possess the mentioned shortcomings.
Applying the operatorK to the both sides of (7.7) and using (4.3) gives

KJ eS(r, t) =
i4

η0
Z−1K(un ×Qi+(r, t))

+i2un ×
∫
S

∫
∇E(r − r′; t − t ′)∇′ · J eS(r′, t ′) dt ′ dS ′

−i2un ×
∫
S

∫
(IK2+ i∇ × IK)E(r − r′; t − t ′) · J eS(r′, t ′) dt ′ dS ′. (7.8)

Now, taking the real part of the both sides leads to the following integral equation of the
second kind for the surface current density:

KcoJ
e
S(r, t) = −

4

η0
Z−1Im {K(un ×Qi+(r, t))}

−2un ×
∫
S

∫
∇Ecr(r − r′; t − t ′)∇′ · J eS(r′, t ′) dt ′ dS ′

+2un ×
∫
S

∫
Im {(IK2+ i∇ × IK)E(r − r′; t − t ′)} · J eS(r′, t ′) dt ′ dS ′

(7.9)

whereK = Kco + iKcr, with the similar notation for the other complex quantities. All
integrals in the equation above exist as principle value integrals. From (4.4) it follows that

Ecr(r; t) = 1

4πr

(
qcr(r)δ

(
t − r

c0

)
+ Im

{
q(r)P

(
r; t − r

c0

)})
.

Representation (4.6) and the equality (cf (4.5))

qcr(r) = exp

(
− r
c0
Nco(0+)

)
sin

(
− r
c0
Ncr(0+)

)



Time-domain Green dyadics for bi-isotropic media 7375

show thatEcr has no singularity and∇∇Ecr(r; t) has at most 1/r singularity at the origin.
Now, performing integration by parts in the second term on the right-hand side of (7.9)
gives

KcoJ
e
S(r, t) = −

4

η0
Z−1Im {K(un ×Qi+(r, t))}

−2un ×
∫
S

∫
∇∇Ecr(r − r′; t − t ′) · J eS(r′, t ′) dt ′ dS ′

+2un ×
∫
S

∫
Im {(IK2+ i∇ × IK)E(r − r′; t − t ′)} · J eS(r′, t ′) dt ′ dS ′.

(7.10)

This equation can be used in numerical calculations.

7.2. Permeable scatterer

In this section, the surfaceS is supposed to be an interface between two different temporally
dispersive materials. To distinguish the two sets of parameters, the intrinsic integral
operatorsN , Z, ε, andµ as well as the dispersive fundamental solutionsE(r; t) and the
Green dyadicsGQ(r; t) in the domainsV± are endowed with the subscripts±, respectively.
The boundary conditions on the surfaceS are

un × (Q+(r, t)+Q∗+(r, t)) = un × (Q−(r, t)+Q∗−(r, t)) =: JmS (r, t)

un × (i
[
Y+Q+

]
(r, t)− i[Y∗+(r, t)Q∗+](r, t))/η0

= un × (i[Y−Q−](r, t)− i[Y∗−(r, t)Q∗−](r, t))/η0 =: J eS(r, t).

Taking the cross product of the left- and right-hand sides of equations (7.5) and (7.6) with
un and using the boundary conditions give the following integral equations for the surface
fields

ic0

8
∂−1
t [Z2

±µ
−1
± (Y∗±JmS − iη0J

e
S)](r, t) =

ic0

2
∂−1
t [Z±µ−1

± (un ×Qi±)](r, t)

∓ 1
2un ×

∫
S

∫
GQ±(r − r′; t − t ′) · [Z±(Y∗±JmS − iη0J

e
S)](r

′, t ′) dt ′ dS ′

or, equivalently,

[K±(Y∗±JmS − iη0J
e
S)](r, t) = 4[K±Z−1

± (un ×Qi±)](r, t)

±2iun ×
∫
S

∫
∇E±(r − r′; t − t ′)∇′ · [(Y∗±JmS − iη0J

e
S)](r

′, t ′) dt ′ dS ′

∓2iun ×
∫
S

∫
[(IK2

± + i∇ × IK±)E±](r − r′; t − t ′)
·[(Y∗±JmS − iη0J

e
S)](r

′, t ′) dt ′ dS ′. (7.11)

The equations above can be used to calculate the unknown surface fieldsJ eS(r, t) and
JmS (r, t). Unfortunately, they suffer from the same problem as equation (7.7)—the integral
kernel ∇∇E (or, to be more exact, its real part∇∇Eco), which appears in the second
term on the right-hand side after integrating by parts, is too singular. However, in the
case in which the materials in the domainsV− and V+ have the same value ofN(0+)
(N+(0+) = N−(0+)), the equations above can be combined to obtain a system of integral
equations forJ eS(r, t) andJmS (r, t) which does not contain highly singular kernels. (Observe
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that a similar condition was needed in [17, 9].) To achieve this, apply the operatorY−1
co± to

the imaginary parts of equations (7.11) and add the results to obtain

[Im {K+Y∗+Y−1
co+ +K−Y∗−Y−1

co−}JmS − Re{K+Y−1
co+ +K−Y−1

co−}η0J
e
S ](r, t)

= 4Im {[K+Z−1
+ Y−1

co+(un ×Qi+)+K−Z−1
− Y−1

co−(un ×Qi−)](r, t)}
+2un ×

∫
S

∫
∇∇[Eco+ − Eco−](r − r′; t − t ′) · JmS (r′, t ′) dt ′ dS ′

+2un ×
∫
S

∫
∇∇[Y−1

co+Ycr+Ecr+ − Y−1
co−Ycr−Ecr−](r − r′; t − t ′)

·JmS (r′, t ′) dt ′ dS ′

+2un ×
∫
S

∫
∇∇[Y−1

co+Ecr+ − Y−1
co−Ecr−](r − r′; t − t ′) · η0J

e
S(r
′, t ′) dt ′ dS ′

−2un ×
∫
S

∫
Re

{
[(IK2

+ + i∇ × IK+)Y−1
co+E+](r − r′; t − t ′)

·[(Y∗+JmS − iη0J
e
S)](r

′, t ′)− [(IK2
− + i∇ × IK−)Y−1

co−E−](r − r′; t − t ′)
·[(Y∗−JmS − iη0J

e
S)](r

′, t ′)
}

dt ′ dS ′ (7.12)

where the integration by parts has been performed. Similarly, applying the operator
((Y−1
± )co)

−1(Y−1
± )∗ to the real parts of equations (7.11) and adding the results give

[Re{K+((Y−1
+ )co)

−1+K−((Y−1
− )co)

−1}JmS
+Im {K+(Y−1

+ )
∗((Y−1

+ )co)
−1+K−(Y−1

− )
∗((Y−1

− )co)
−1}η0J

e
S ](r, t)

= 4Re{[K+Z−1
+ (Y−1

+ )
∗((Y−1

+ )co)
−1(un ×Qi+)

+K−Z−1
− (Y−1

− )
∗((Y−1

− )co)
−1(un ×Qi−)](r, t)}

+2un ×
∫
S

∫
∇∇[Eco+ − Eco−](r − r′; t − t ′) · η0J

e
S(r
′, t ′) dt ′ dS ′

+2un ×
∫
S

∫
∇∇[((Y−1

+ )co)
−1(Y−1

+ )crEcr+

−((Y−1
− )co)

−1(Y−1
− )crEcr−](r − r′; t − t ′) · η0J

e
S(r
′, t ′) dt ′ dS ′

−2un ×
∫
S

∫
∇∇[((Y−1

+ )co)
−1Ecr+ − ((Y−1

− )co)
−1Ecr−](r − r′; t − t ′)

·JmS (r′, t ′) dt ′ dS ′

+2un ×
∫
S

∫
Im {[(IK2

+ + i∇ × IK+)((Y−1
+ )co)

−1E+](r − r′; t − t ′)

·[(JmS − i(Y−1
+ )
∗η0J

e
S)](r

′, t ′)

−[(IK2
− + i∇ × IK−)((Y−1

− )co)
−1E−](r − r′; t − t ′)

·[(JmS − i(Y−1
− )
∗η0J

e
S)](r

′, t ′)} dt ′ dS ′. (7.13)

From the results in the previous section it follows that the integral kernels∇∇Ecr±
have at most 1/r singularity at the origin. Furthermore, due to the assumption that
N+(0+) = N−(0+), the singularity of the kernel∇∇(Eco+−Eco−) can be estimated by 1/r
as well (cf [9]). Thus, equations (7.12) and (7.13) build a system of integral equation for
the fieldsJ eS(r, t) andJmS (r, t) which can be used in numerical calculations.
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8. Conclusion

In this paper, the Green dyadics for temporally dispersive bi-isotropic media are analysed
using time-domain techniques.

The use of the complex time-dependent electromagnetic field simplifies the analysis
significantly. Advantages are more evident here than in the case of isotropic materials [9].
This depends on the fact that the electric and the magnetic fields in bi-isotropic media are
coupled in a more intricate way.

The Green dyadics for bi-isotropic materials are introduced and given in an explicit form
using Schwartz’ pseudo-functions. The derivation of the equation for the Green dyadics
differs slightly from the one used in [9]. No electromagnetic potentials are needed in this
work.

The example of section 5 shows that the second forerunner approximation to the dipole
fields in an unbounded, temporally dispersive, bi-isotropic medium gives reasonably good
results. It is also seen that the agreement between the numerical result and the approximation
becomes better with increasing distance from the source. The main advantage of the
proposed technique is that no time- or memory-consuming computations are involved. If it
takes hours to compute the numerical values of the fields, it takes only seconds to obtain
the approximation. Obviously, the introduced method can be used to obtain fields due to
other time-dependent sources (antennas, etc).

The surface integral equations derived in section 7 have reasonably regular integral
kernels, and it is conjectured that they can be solved numerically with the help of the
standard techniques (e.g. the method of moments). Note that after the surface fields are
obtained, all quantities on the right-hand sides of (6.3) and (6.4) are known and these integral
relations can be used to calculate the fields at any point.
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